FMN011 — Seminar 2 — Solution of Linear Systems

- 1. True or false:
 - (a) If A is nonsingular, then the number of solutions to Ax = b depends on the particular choice of vector b.
 - (b) For a symmetric matrix S, it is always the case that $||S||_1 = ||S||_{\infty}$.
 - (c) If a triangular matrix has a zero entry on its main diagonal, then the matrix is necessarily singular.
 - (d) The product of two upper triangular matrices is also upper triangular.
 - (e) If the rows of a square matrix are linearly dependent, then the columns of the matrix are also linearly dependent.
 - (f) If A is any $n \times n$ matrix and P is any $n \times n$ permutation matrix, then PA = AP.
 - (g) For $x \in \mathcal{R}^n$, $||x||_1 \ge ||x||_{\infty}$.
 - (h) If det(A) = 0, then ||A|| = 0.
 - (i) The product of two symmetric matrices is also symmetric.
 - (j) $\kappa_p(A) = \kappa_p(A^{-1}).$
 - (k) A system Ax = b can have exactly two distinct solutions.
 - (l) Every nonsingular matrix A can be written as A = LU, where L is lower triangular and U is upper triangular.
 - (m) A singular matrix does not have an LU(P) factorization.
- 2. Given Ax = b, what effect on the solution vector x results from
 - (a) Permuting the rows of $\begin{bmatrix} A & b \end{bmatrix}$?
 - (b) Permuting the columns of A?
 - (c) Multiplying both sides of the equation from the left by a nonsingular matrix M?
- 3. Consider the matrix

$$A = \begin{bmatrix} 4 & -8 & 1 & 2 \\ 6 & 5 & 7 & 3 \\ 0 & -10 & -3 & 5 \\ 5 & -1 & 1 & 0 \end{bmatrix}$$

What will the initial pivot in Gaussian elimination be if

- (a) No pivoting is used?
- (b) Partial pivoting is used?
- 4. Given $n \times n$ matrices A and B, what is the best way to compute $A^{-1}B$?

5. If x is a column vector and A is a matrix, which of the following computations require less work?

(a)
$$y = (xx^T)A$$

(b)
$$y = x(x^T A)$$

- 6. What is the inverse of a permutation matrix P?
- 7. Assume you have already computed the LU factorization, PA = LU. How would you use it to solve the system $A^T x = b$?
- 8. Classify each matrix as well conditioned or ill conditioned:

(a)
$$\begin{pmatrix} 10^{10} & 0 \\ 0 & 10^{-10} \end{pmatrix}$$

(b) $\begin{pmatrix} 10^{10} & 0 \\ 0 & 10^{10} \end{pmatrix}$
(c) $\begin{pmatrix} 10^{-10} & 0 \\ 0 & 10^{-10} \end{pmatrix}$
(d) $\begin{pmatrix} 1.0000001 & 2 \\ 2 & 4 \end{pmatrix}$

- 9. In solving a linear system Ax = b, what is meant by the *residual* of an approximate solution \hat{x} ? Does a small relative residual always imply that the solution is accurate?
- 10. Rank the following methods according to the amount of work required for solving most systems:
 - (a) Gaussian elimination with partial pivoting
 - (b) Explicit matrix inversion followed by matrix-vector multiplication
- 11. One of the following three systems could not be solved by Gauss-Seidel. Which one is it?

$$-3x_{1} - 6x_{2} + 2x_{3} = -61.5$$

$$x_{1} + x_{2} + 5x_{3} = -21.5$$

$$10x_{1} + 2x_{2} - x_{3} = 27$$

$$x_{1} + x_{2} + 5x_{3} = 7$$

$$x_{1} + 4x_{2} - x_{3} = 4$$

$$3x_{1} + x_{2} - x_{3} = 3$$

$$-x_{1} + 3x_{2} + 5x_{3} = 7$$

$$-2x_{1} + 4x_{2} - 5x_{3} = -3$$

$$2x_{2} - x_{3} = 1$$

12. Suppose we have an iterative method to solve Ax = b,

$$x_{k+1} = x_k + L^{-1}r_k$$

where L is a very large sparse lower triangular matrix, A is a sparse matrix, and $r_k = Ax_k - b$. What is a good way to compute x_{k+1} ? What is the order of the number of computations that must be performed at each step?

C. Arévalo