FMN011 - Seminar 2 - Solution of Linear Systems

1. True or false:
(a) If A is nonsingular, then the number of solutions to $A x=b$ depends on the particular choice of vector b.
(b) For a symmetric matrix S, it is always the case that $\|S\|_{1}=\|S\|_{\infty}$.
(c) If a triangular matrix has a zero entry on its main diagonal, then the matrix is necessarily singular.
(d) The product of two upper triangular matrices is also upper triangular.
(e) If the rows of a square matrix are linearly dependent, then the columns of the matrix are also linearly dependent.
(f) If A is any $n \times n$ matrix and P is any $n \times n$ permutation matrix, then $P A=A P$.
(g) For $x \in \mathcal{R}^{n},\|x\|_{1} \geq\|x\|_{\infty}$.
(h) If $\operatorname{det}(A)=0$, then $\|A\|=0$.
(i) The product of two symmetric matrices is also symmetric.
(j) $\kappa_{p}(A)=\kappa_{p}\left(A^{-1}\right)$.
(k) A system $A x=b$ can have exactly two distinct solutions.
(1) Every nonsingular matrix A can be written as $A=L U$, where L is lower triangular and U is upper triangular.
(m) A singular matrix does not have an $\mathrm{LU}(\mathrm{P})$ factorization.
2. Given $A x=b$, what effect on the solution vector x results from
(a) Permuting the rows of $\left[\begin{array}{ll}A & b\end{array}\right]$?
(b) Permuting the columns of A ?
(c) Multiplying both sides of the equation from the left by a nonsingular matrix M ?
3. Consider the matrix

$$
A=\left[\begin{array}{cccc}
4 & -8 & 1 & 2 \\
6 & 5 & 7 & 3 \\
0 & -10 & -3 & 5 \\
5 & -1 & 1 & 0
\end{array}\right]
$$

What will the initial pivot in Gaussian elimination be if
(a) No pivoting is used?
(b) Partial pivoting is used?
4. Given $n \times n$ matrices A and B, what is the best way to compute $A^{-1} B$?
5. If x is a column vector and A is a matrix, which of the following computations require less work?
(a) $y=\left(x x^{T}\right) A$
(b) $y=x\left(x^{T} A\right)$
6. What is the inverse of a permutation matrix P ?
7. Assume you have already computed the LU factorization, $P A=L U$. How would you use it to solve the system $A^{T} x=b$?
8. Classify each matrix as well conditioned or ill conditioned:
(a) $\left(\begin{array}{cc}10^{10} & 0 \\ 0 & 10^{-10}\end{array}\right)$
(b) $\left(\begin{array}{cc}10^{10} & 0 \\ 0 & 10^{10}\end{array}\right)$
(c) $\left(\begin{array}{cc}10^{-10} & 0 \\ 0 & 10^{-10}\end{array}\right)$
(d) $\left(\begin{array}{cc}1.0000001 & 2 \\ 2 & 4\end{array}\right)$
9. In solving a linear system $A x=b$, what is meant by the residual of an approximate solution \hat{x} ? Does a small relative residual always imply that the solution is accurate?
10. Rank the following methods according to the amount of work required for solving most systems:
(a) Gaussian elimination with partial pivoting
(b) Explicit matrix inversion followed by matrix-vector multiplication
11. One of the following three systems could not be solved by Gauss-Seidel. Which one is it?

$$
\begin{aligned}
-3 x_{1}-6 x_{2}+2 x_{3} & =-61.5 \\
x_{1}+x_{2}+5 x_{3} & =-21.5 \\
10 x_{1}+2 x_{2}-x_{3} & =27 \\
x_{1}+x_{2}+5 x_{3} & =7 \\
x_{1}+4 x_{2}-x_{3} & =4 \\
3 x_{1}+x_{2}-x_{3} & =3 \\
-x_{1}+3 x_{2}+5 x_{3} & =7 \\
-2 x_{1}+4 x_{2}-5 x_{3} & =-3 \\
2 x_{2}-x_{3} & =1
\end{aligned}
$$

12. Suppose we have an iterative method to solve $A x=b$,

$$
x_{k+1}=x_{k}+L^{-1} r_{k}
$$

where L is a very large sparse lower triangular matrix, A is a sparse matrix, and $r_{k}=A x_{k}-b$. What is a good way to compute x_{k+1} ? What is the order of the number of computations that must be performed at each step?
C. Arévalo

